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Abstract

It is shown that the usual one and two-mode squeezing are based on
reducible representations of the SU(1,1) group. Generalised squeezing is
{ntroduced with the use of different SU(1,1) rotacions on each irreducible
sector. Two-mode squeezing entangles the modes and information theory
methods are used to study this entanglement. The entanglement of three modes
is also studied with the use of the strong subadditivity property of the
entropy.

1. Intreoduction

In a recent paper (1] we have explained that two-mode squeezing is based
on reducible representations of the SU(1,1). The various irreducible sectors
have been identified and different SU(1l,l) rotations have been performed on
each of them, generalizing in this way the concept of squeezing. In this
paper we extend these ideas. In section 2 we consider one mods squeezing and
prove that it is also based on reducible representations of SU(1,1). The two
irreducible sectors are identified and different SU(l,l) rotations are
applied on each of them, generalising in this way the concept of one-mods
squeezing. In section 3 the tvo-mode case is considered in connection with
both the SU(1,1) and SU(2) groups. Some of the results presented in (1] are
briefly reviewed here. Each irreducible sector of the SU(1,1) (or SU(2))
group is squeszed {ndependently and the generalised squeezed state is
characterised by an infinite number of squeezing parameters. Hamiltonians
which will lead to this type of squeezing, are presented.

Two-mode squeezing entangles the two modes. Especially our generalised
squeezing entangles them in a very complicated way. One approach to study
this entanglement is by using information theory methods. In section 4 wve
use the subaddivity and strong subadditivity properties of the entropy to
define quantities which express the entanglement of two and three quantua
systems. Espacially interesting are the results for three entangled systens,
because shey indicate that this case is a non-trivial generalisation of the
two system entanglement. The latter case has of course been discussed since
the beginning of quantum mechanics; but it is only recently that some
preliminary discussion of the former case has appeared [2]. Our rasults
based on information theory methods suggest that the three systeam
entanglement is a very interesting probleam that requires further study.

2. Generalised one-mode squeezing
We consider the harmonic oscillator Hilbert space H and express it as

H - Ho + H (L)

1

where H_ is the subspace spanned by the even number eigenstates and H the
.ub.p.cﬁ spanned by the odd number eigenstates. We also consider the
corresponding projsction operators to these subspaces:
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The one mode squeszing operators are defined as:
o 1
S(r, §, A) =exp [--T o 1! k, --r ok ] exp (13K )
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2 - - 16
They form a reducible representation of SU(1,1). More specifically,
chey form the k « 1/4 irreducible representation when they act on L only;
and the k = 3/4 irreducible representation when they act on H1 only (3].
Related to this is tho fact :ha:
[S(r. X)), = ] - [S(r. ‘¢, A), L ] -0 (4)
Thc following unicary oporacor squnozos ind.pondcntly sach irtcduciblo
sector: o .
i U(r° l° xo ; rl 1 1) - S(r , o, xo)_'g + S(rl. 01, xl) "o (5)
% This {s more general than the operator of equ.(3). Only in the special
' case - . '
; R
!
L PR ‘o - 01 H Ao - Al (6)

the oporacor (%) reduces to the optrator (3). the
on a coherent state | A >, ve get a generalised squeezed stats:

l ATl i '1 M2 U(ro 1o2o + T A | &>
; -5(:,°,x)ula>+3(r I.A)¢1|A>
f In the specisl case of equ.(6) this reduces to the usual squoozod
. states.
i
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Acting wlth :ho operator (5)
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In systems described by the Hamiltonian

2 +2

* 2 * 2
He= u'a+a + (po u+ + B, a’) LA + (pl a + By a’) '1 (8)

ordinaty-éohorcnc states will evolve into the generalised squeezed states
(7). 1In cthe special case By = My the Hamiltonian (8) reduces to the

Hamiltonian
+ 2 +2
Hewaa+uya +pa (9)

which is associated to the usual squeezed states.

The appropriate group for the study of two-mode quadratic Hamiltonians
is Sp(4,R) [4]. In this paper we shall only consider its subgroups SU(l,l)
and SU(2) in connection with the Hamiltonians:

+ + * + +

Hl w8 A + wy 12 a, + 4 11 ‘2 +u a ‘2 (10)
+ + + * 4

Hz -w; 88 +w, s, ., tua e, e o8 s, (11)

correspondingly. Both of thess Hamiltonians have been used extensively in
quantum optics probleas [3].

Starting vith the SU(1,1) group vwe express the two-mode Hilbert space as
-

H, x Hy = kz.. H (12)
vhere Hk is the subspace spanned by the number eigenstates

B = | N+k, N> ; Nemax (o, - k), .... ®) (13)

We also introduce the corresponding projection operators

L) | N+k, <N+k NJ|

Lepg=-1 (14)

The two-mode SU(l,l) squeezing operators ars defined as

1 1
s, 0, ) mexp [ --re K r-retfk]apak)
2 2
K -a,%a’ K = K ! (. a, +a. a +1)
T T T e T A T H {1t N
1 1
2 + + 2
K= : (a,” a) - &, 2" - z (15)
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They form a reducible representation of SU(1l,1). More specifically,
when they act on the space Hk only, they form the

1+ |k
! - (16)
2

irreducible representation of SU(l,l) which belongs in the discrete series.
Note also that

[S(r, &, )), nk] -0 (17)

The following unitary operator squeezes independently each irreducible
sector:

In the special case '
S R R e

, = 1" ‘o - ‘1 - ... (19)

.. =2 -Xo-kl-...

-1
the operators (18) reduce to the operators (13).

Acting with the operators (18) on two-mode cohersnt states we get
generalised two-mode squeszed states:

U, 0, A ) | AL Ay > = E S(ry. 0. A =, | AL Ay > (20)

In the special case of cqu.(19jrthoy reduce to the usual two-mods
squeszed states. In systeas described by the Haailtonian

+ + * 4+ 0+
He= w8 A te, s, a, § (pk 8 8, +um a5 a, )tk (21)

ordinary coherent states wvill evolve into the states of equ.(20). In the
special case that all the are squal to each other, the Hamiltonian (21)
reduces 5o th¥ Hami{lconian (10).

In the case of the SU(2) group we express the two-mode Hilbert space as
Hyx Hy = § Hyyel

j=0, 41, .... (22)
where sz+1 is the subspace spanned by the number sigenstates

nzj+1 - (| N 2§-N> ; N=0, .... (2)) ) (23)
We also introduce the corresponding projection operators
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23

" - ¥ | N, 23-N> < N, 24-N|
2jf1 N=0
DRI (24)
The SU(2) squeezing operators are defined as:
1 1
T(r, 0, ) =exp[--tetty +-x M) exp (A1)
2 2 -
+ 1
J+ - 8 J_ -a 3, ' Jo - ; (11 a8 - 3, 12)
1 1
+ +
Jz - ; (11+ . + Iz+ 12)] [ ; (11 a8 +a, a + 1)] (25)

They form a reducible representation of SU(2). When they act on the
space H +1 only, they form the j irreducible representation of SU(2). Note
also ché:

[T (x, 0.2,y 4] =0 (26)

The following unitary operator performs SU(2) rotations independently on each
irreducible sector:

U (8010 25010 23910 = L TF2g010 25010 Y2501 "25m1 2N
In the special case:

r,, =T, -

)" - og -

LR (28)

The operators (27) reduce to the operators (25). Acting with the
operators (27) on two-mode coherent states we get the states:

U Gy fag01r 2gan)) | Ay A2 >

} T (T P2ge10 A2ge1) T2ger | A0 A2 (29

They will be formed during the time evolution of ordinary coherent
states in systems described by the Hamiltonian:

+ + . + * o+
Hew a5’ 8 +0, 8, s+ ) g4l (p21+1 a8 g Y a,) (30)

In the special case that all the u are equal to each other, the
Haniltonian (30) reduces to the Ha#iilonian (11).

The uncertainty properties of the states (20), (29) have been studied in

(1]. The results presented there shov that both of these states exhibic
squeezing.
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4. Information theory approach to guantum entanglement

In this section we use quantum information theory methods for the study
of two- and three-mode correlated systems. Let , be a two-mode density
matrix and <N,>, <N,> the average number of photons in the two modes. As in
our previous work [gl we define the information contained in this densitcy

matrix as

th th
LT =S . S =Slpy " (A3 x p,7" (N3] - 5(p)
S(p) = - Tr p In p
th <N1>Ni l l
P (<N,>) = N, ><N : {=1,2 (1)
i i 1+ <N1>)1+N1 i i

Following the negentropy ideas of Brillouin we subtract here the entropy of
the system from the maximum entropy that the system could have had, with the
avaerage number of photons in the two modes been kept fixed. The maximum
entropy is equal to the entropy of s thermal system with an averags number of
photons in the two modes <Nl>' <NZ>' Taking partial traces, we define:

Py =Trpp : py=Tr, » (32)
and express the information (31) as [7, 8]

Il = I1 + I2 + 112

1, =S (o, (@>)] - S(p,)

i i i i

112 - S(pl) + S(Pz) - S(P) o B (33)

I, is the information in the mode {; and I is the information in the
corrclition batween the two modses. The lubadditlsity property ensures that
the I,, i{s non-negative. Numerical evaluation of the quantities Il' 12. 112
for s*&ornl examples has been presented in [1].

A non-trivial extension of thess ideas occurs in the case of :ﬁroc
correlated modes. The information in this case is given by

1-5 ™ - 50)

th™  th th th
pF=n (<Nl>) X 2, (<N2>) X py (<83>) (34)
Ve define
’ij - ‘l'rk N P T'jk .

I, = Sle,™ (X)) - $(s))

I, is the information in the mode {. I, ,. is the information in the
cérrolltion‘bocvccn the modes (1L,)). U&Jthcn express the total information
in the three-mode system as:

eI +1I,+1I.+1.,+ 123 + I(12 ; 23) (36)

1 2 k 12
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where
I(12 ; 21) = S(plz) + s(’23) < S(p) - S(pz) (37)

The strong subadditivity property [9] ensures that the quanticy I(12 ; 23) is
non-negative. For symmetry reasons, somebody might be tempted to split
I(12 ; 23) as:

(12 ; 23) = 113 + A (38)

so that he can express the information I of equ.(36), as the sum of the three
informations in the three modes; the three informations in the correlated
pairs of modes; and the quantity A characterising the correlation between
all modes. However the quantity A is not necessarily positive and {ts
interpretation as information would be incorrect. Therefore, the information
I of a three-mode systen is the sum of the three informations in the three
modes; the two correlation informations in twe of the pairs; and che
information I(12 ; 23) of equ.(37) which describes nev types of correlations
in the three-mode systems. This result can be used as a "guide” of how to
study the entanglement of three systems. It is seen that threse system
entanglement i{s a non-trivial generalisation of two system entanglement.

5. DRiscusaiop

In many cases the concept of squaezing is based on reducible
representations of the SU(1l,1) (or SU(2)) group. In these cases different
SU(1,1) (or SU(2)) rotations on each irreducible sector lead to generalised
squeezing. These i{deas have been applied to both one-mode and two-mods
squeezing.

Two-mode squeezing corrslates the two-modes and information theory
methods have been used for the study of these correlations. The
subadditivity and strong subadditivity properties of the entropy have been
used for the study of two and three correlated systems, correspondingly. It
has besn shown that the entanglement of three systems is a non-trivial
generalisation of the entanglement of two systems. Further work is required
in cthis direction.
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